Lec 2

Math 431 - Introduction to Probability

September 8, 2023

Last time.

Probability Space. A probability space is a triple (Ω,F,P)(\Omega, \mathcal{F}, P).

  • Ω\Omega is the sample space.(set of all possible outcomes)

  • F\mathcal{F} set of events. (Subset of Ω\Omega). (,ΩF\emptyset, \Omega \in \mathcal{F})

  • PP is a probability measure. P:F[0,1]P: \mathcal{F} \rightarrow [0,1]

A1,,AnA_1, \dots, A_n disjoint -> P(A1An)=P(A1)++P(An)P(A_1 \cup \dots \cup A_n) = P(A_1) + \dots + P(A_n)

P(iAi)=iP(Ai)P(\bigcup_iA_i) = \sum_iP(A_i)

Uniformly chose element froma finite set.

Ω\Omega is a finite set.

Each outcome is equally likely.

Ω=ω1,,ωn\Omega = {\omega_1, \dots, \omega_n}

P(ωi)=P(ω2)==P(ωn)=1nP({\omega_i}) = P({\omega_2}) = \dots = P({\omega_n}) = \frac{1}{n}

iP(ωi)=P(inωi=1\sum_iP({\omega_i}) = P(\bigcup_i^n{\omega_i} =1

AΩA\subset \Omega. P(A)=P(a1,,an)=i=1nP(ωi)=AΩP(A) = P({a_1, \dots, a_n}) = \sum_i=1^nP({\omega_i}) = \frac{|A|}{|\Omega|}.

Worksheet.

1- Possible outcomes: (a,b,c),1a6,b,cH,T{(a,b,c), 1 \leq a \leq 6, b , c \in {H,T}}

2- b. (a,b),1a,b6{(a,b), 1\leq a, b \leq 6}

d. Ω=(a,b),1ab6\Omega = {(a,b), 1\leq a \leq b \leq 6} - different. (1,1) is 1/36 and (1,2) is 1/18 (because (2,1) (1,2) is same.)

Sampling

We have a finite set XX. Non empty set.

We take a sample of size $k$ from the set unfiromly at random.

Can take without replacement or with replacement.

Can also consider with order or without order.

With order: (a1,a2,,ak)(a_1, a_2, \dots, a_k).- ordered sequence. without order: pick 3 dice and get a set with 3 dice (without order information). - a1,a2,,ak{{a_1, a_2, \dots, a_k}}

Sample from X with replacement k times.

Ω=(a1,a2,,ak),aiX=Xk\Omega = {(a_1, a_2, \dots, a_k), a_i \in X} = X^k

Ω=nk|\Omega| = n^k , n=Xn = |X|

Sample from X without replacement k times with order

1kn1 \leq k \leq n

Ω=(a1,a2,,ak),aiX,aiaj if ij\Omega = {(a_1, a_2, \dots, a_k), a_i \in X, a_i \neq a_j \text{ if } i \neq j}

Ω=n!(nk)!|\Omega| = \frac{n!}{(n-k)!}

without replacement and without order

size = kk

Ω=a1,a2,,ak,aiX,aiaj if ij\Omega = {{a_1, a_2, \dots, a_k}, a_i \in X, a_i \neq a_j \text{ if } i \neq j}

Ω=(nk)=n!k!(nk)!|\Omega| = \binom{n}{k} = \frac{n!}{k!(n-k)!}

Last updated