Lec1

Optimization steps

Problem analysis: real world     \iff math relationship

minf(x)\min f(x) objective function (modeling)

s.t xSx \in S , S = feasible set.

study the math properties of the model: (model analysis)

apply an algorithm to compute an optimal solution xx^* (solution method)

verification and simulation

Linear Optimization

A function f:RnRf: \mathbb{R}^n \rightarrow \mathbb{R} is linear if:

  1. f(x+y)=f(x)+f(y)x,yRnf(x+y)=f(x)+f(y) \quad \forall x, y \in \mathbb{R}^n

  2. f(λx)=λf(x)xRn,λRf(\lambda x)=\lambda f(x) \quad \forall x \in \mathbb{R}^n, \forall \lambda \in \mathbb{R} Equivalently, ff is linear if it can be written as:

cx=i=1ncixi=c1x1+c2x2++cnxn,c^{\prime} x=\sum_{i=1}^n c_i x_i=c_1 x_1+c_2 x_2+\cdots+c_n x_n,

where c1,c2,,cnc_1, c_2, \ldots, c_n are real numbers.

real-world relationships \Leftrightarrow math relationships

mindx\min d^{\prime} x \quad LINEAR objective function

s.t. aixbiiM1\quad a_i^{\prime} x \geq b_i \quad i \in M_1

aixbiiM2a_i^{\prime} x \leq b_i \quad i \in M_2 \quad LINEAR inequalities

aix=biiM3a_i^{\prime} x=b_i \quad i \in M_3

Example

minimize2x1x2+4x3 subject to x1+x2+x423x2x3=5x3+x43x10x30\begin{aligned} \operatorname{minimize} & 2 x_1-x_2+4 x_3 \\ \text { subject to } & x_1+x_2+x_4 \leq 2 \\ & 3 x_2-x_3=5 \\ & x_3+x_4 \geq 3 \\ & x_1 \geq 0 \\ & x_3 \leq 0 \end{aligned}

Strict inequalities like x3+x4>3x_3+x_4>3 are not allowed!

We learn about model analysis and solution methods.

Optimal conditions, duality. - model analysis

Simplex algorithm - solution methods.

Last updated